Use case diagrams
A Use case diagram’s purpose is to present a graphical overview of the functionality provided by or required by a system. It identifies "actors" and "use cases" and the interactions between them.

A use case diagram captures the functional aspects of a system. In essence it describes "who" can do "what" with the system in question.

[image: image1.emf]System boundary

The system boundary delineates the area of interest. It potentially encompasses the entire system as defined in the problem statement, but could just enclose a distinct sub-set of the system.

The system boundary is shown as a rectangle enclosing all the use cases in the system. Actors are shown outside the boundary.

Actors

An actor portrays any entity that plays a role in one or more processes within the system, but is not part of the system. Actors either act on the system or are acted upon by the system. They can be specific individuals or groups of people, positions within an organisation, other organisations, devices or whole other systems. It is the role (or roles) of the actor in relation to the system that is important.

An actor is shown as a stick figure and is depicted outside the system boundary. [image: image2.emf]use cases

actors

It is labelled (usually at the feet) to indicate the nature of the actor or their role.

An actor in a use case diagram is associated with one or more use cases. The interaction is shown as a line joining the actor to the use case. These lines do not indicate information flow, but merely that an association exists between the actor and the use case

To identify an actor, search in the problem statement for terms that portray roles in the system.

Use cases

A use case describes a sequence of actions that provide something of value to an actor; they have a specific achievable goal. In a use case diagram they are a visual representation of a distinct functionality within the system.

[image: image3.emf]A use case is shown as a ‘horizontal’ ellipse in a use case diagram. It is labelled (inside the ellipse) to indicate the nature of the goal of the actions. The label is best made of a verb-noun pair of words describing the goal.

As the first step in identifying use cases, list the discrete system functions in the problem statement.

Use case relationships

Use cases are generally associated with actors, but relationships among use cases can also be shown. Three seem to be common:

Include

A set of actions may be identified as a distinct use case. This use case may itself be included as part of other use cases. In this circumstance, the included use case can be drawn separately in the use case diagram.

The include relationship allows a common set of actions to be depicted once. It is not an optional relationship; it implies mandatory insertion of the included use case into the base (or including) use case. An included use case never stands alone.

An include relationship is shown as a dashed arrow going from the base use case to the included use case, and is labelled with “<<include>>”. Read it in the direction of the arrow as ‘This use case includes that use case”. [image: image4.emf]base

<<include>>

Use case relationships cont.

Extend

A set of actions may be identified as a distinct use case; however, under certain conditions other actions may need to be undertaken. These other actions can themselves form a use case. In this circumstance, the optional use case can be drawn separately in the use case diagram and can be said to “extend” the base use case.

The extend relationship allows a set of optional actions to be depicted. The extension use case is inserted into the base (or extended) use case only when certain conditions are met. The base use case can stand alone. The extension use case simply enhances the functionality of the base use case and it cannot replace it.

An extend relationship is shown as a dashed arrow from the extension use case to the base use case, and is labelled with “<<extend>>”. [image: image5.emf]base

<<extend>>

{ if ...}

 Read it in the direction of the arrow as ‘This use case extends that use case”. The conditions under which the extension occurs may or may not be included, but if they are they are generally written inside a pair of braces: { }.

Generalizations

A set of actions may be identified as a distinct use case; however, these actions may represent a specific case of a more general set of actions. These other actions themselves form a use case. In this circumstance, the more general use case can be drawn separately in the use case diagram.

A generalization relationship allows a common set of actions to be depicted once. The child (or specialised) use case inherits the behaviour and meaning of the parent (or generalised) use case, and then may add to or override the behaviour of its parent. In principle, the parent use case could replace the child use case.

A generalization relationship is shown as a solid arrow with the arrowhead drawn as an open triangle. The arrow goes from the child to the parent and is not labelled. Read it in the direction of the arrow as ‘This use case is a specialised version of that use case”. [image: image6.emf]parent

child

Distilled from a number of sources including:

· Several entries from Wikipedia (‘use case diagram’, ‘use case’)

· Scott W Ambler’s ‘Agile Modeling’ website

· ‘Use case diagrams’ at www.primaryview.org

· ‘Creating use case diagrams’ by Mandar Chitnis, Pravin Tiwari, & Lakshmi Ananthamurthy at Developer.com

· ‘L04_UML1_UseCase[2].ppt’ a PowerPoint lecture by Iris Berger(?) from ???

R.Timmer-Arends 4-Sep-10 use case.docx

